Hello there,
I’m trying to replicate the GPT-2 NLP text generator model that I read about here: https://www.analyticsvidhya.com/blog/2019/07/openai-gpt2-text-generator-python/
I’ve prepped the environment, but unfortunately, when I try to run the model with some standard parameters, I’m seeing the following “ValueError”:
ValueError: Dimensions must be equal, but are 50257 and 100 for ‘sample_sequence/Less’ (op: ‘Less’) with input shapes: [100,50257], [100].
I’m using the same “interact_model” code on the website and the following parameters:
interact_model(‘345M’,12345, 100, 100, 1000, 10, 40, )
Does anyone have any tips for why this error is being thrown?
It looks like the code is attempting to do a “less than” comparison at some point, and because the array shapes are incompatible, the code cannot complete that operation.
Thanks in advance!
def interact_model(
model_name,
seed,
nsamples,
batch_size,
length,
temperature,
top_k,
models_dir
):
models_dir = os.path.expanduser(os.path.expandvars(models_dir))
if batch_size is None:
batch_size = 1
assert nsamples % batch_size == 0
enc = encoder.get_encoder(model_name, models_dir)
hparams = model.default_hparams()
with open(os.path.join(models_dir, model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if length is None:
length = hparams.n_ctx // 2
elif length > hparams.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)
with tf.Session(graph=tf.Graph()) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
np.random.seed(seed)
tf.set_random_seed(seed)
output = sample.sample_sequence(
hparams=hparams, length=length,
context=context,
batch_size=batch_size,
temperature=temperature, top_k=top_k
)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name))
saver.restore(sess, ckpt)
while True:
raw_text = input("Model prompt >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
for _ in range(nsamples // batch_size):
out = sess.run(output, feed_dict={
context: [context_tokens for _ in range(batch_size)]
})[:, len(context_tokens):]
for i in range(batch_size):
generated += 1
text = enc.decode(out[i])
print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
print(text)
print("=" * 80)
1 post - 1 participant