@mosrihari wrote:
Hi Everyone,
I am new to Deep Learning and I tried some code with Deep Learning techniques to predict the categories of the text. Please find the specifications of dataframe below.
- Stopwords, punctuations and tolower are done to all the text and it is now in bag of words format
- Many aspect Terms are one hot encoded.
aspectTerm=pd.get_dummies(aspect[“Aspect.Terms”])
print(aspectTerm)
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
aspect=pd.concat([aspect,aspectTerm],axis=1)- There are totally 9 aspect categories (Target)
Input dataframe shape:(2801, 2431)
Target dataframe unique categories: 9
I tried using very simple ANN in Keras as below:classifier=Sequential()
#We will start adding layers Adding the input layer and one hidden layer
classifier.add(Dense(units=1220,kernel_initializer=‘uniform’,activation=‘relu’,input_dim=2431)) #output_dim is chosen (11 input+1 output)/2
classifier.add(Dropout(rate=0.1))
#input dim is mandatory in the beginning
classifier.add(Dense(units=8,kernel_initializer=‘uniform’,activation=‘sigmoid’))
#Going to apply stochastic gradient descent to the ANN
classifier.compile(optimizer=‘adam’,loss=‘binary_crossentropy’,metrics=[‘accuracy’])classifier.fit(X_train,y_train,batch_size=1000,epochs=3)
But I am getting the following error:
ValueError: Error when checking target: expected dense_14 to have shape (8,) but got array with shape (1,)Could you please advice on the above ?
Thank you in advance
Posts: 1
Participants: 1