@rumsinha wrote:
for this requirement I approached with time series.
data as below
bookingdate bookingqty
2014-07-27 202
2014-08-03 564
2014-08-10 359
2014-08-17 638
2014-08-24 487
2014-08-31 491
2014-09-07 364
2014-09-14 762
2014-09-21 419
2014-09-28 642
2014-10-05 723
2014-10-12 579
2014-10-19 1803
2014-10-26 437
2014-11-02 587
2014-11-09 803
2014-11-16 1347
2014-11-23 600
2014-11-30 616
2014-12-07 2242
2014-12-14 1313
2014-12-21 264
2014-12-28 918
2015-01-04 420
2015-01-11 741
2015-01-18 2213
2015-01-25 379
2015-02-01 386
2015-02-08 854
2015-02-15 1235
2015-02-22 726
2015-03-01 774
2015-03-08 1135
2015-03-15 1127
2015-03-22 466
2015-03-29 987
2015-04-05 665
2015-04-12 997
2015-04-19 2800
2015-04-26 594
2015-05-03 715
2015-05-10 2009
2015-05-17 1592
2015-05-24 499
2015-05-31 1906
2015-06-07 1619
2015-06-14 1277
2015-06-21 683
2015-06-28 2132
2015-07-05 1195
2015-07-12 1250
2015-07-19 5001
2015-07-26 320
2015-08-02 577
2015-08-09 825
2015-08-16 885
2015-08-23 1910
2015-08-30 1072
2015-09-06 615
2015-09-13 1809
2015-09-20 1243
2015-09-27 1516
2015-10-04 754
2015-10-11 910
2015-10-18 1766
2015-10-25 599
2015-11-01 536
2015-11-08 1170
2015-11-15 2060
2015-11-22 719
2015-11-29 706
2015-12-06 1129
2015-12-13 1807
2015-12-20 949
2015-12-27 653
2016-01-03 1612
2016-01-10 1058
2016-01-17 2699
2016-01-24 617
2016-01-31 335
2016-02-07 527
2016-02-14 526
2016-02-21 1729
2016-02-28 512
2016-03-06 1026
2016-03-13 824
2016-03-20 1144
2016-03-27 711
2016-04-03 743
2016-04-10 847
2016-04-17 833
2016-04-24 4192
2016-05-01 576
2016-05-08 610
2016-05-15 645
2016-05-22 950
2016-05-29 578
2016-06-05 786
2016-06-12 990
2016-06-19 1804
2016-06-26 853
2016-07-03 767
2016-07-10 1325
2016-07-17 1872
2016-07-24 3002
I created time series object as
library(zoo)
pidbookingdata <- zoo(arrangeddata$bookingqty,arrangeddata$bookingdate)
I can see in the x axis index for year 2015 and 2016
but when I use decompose function I get the below error as
decompose(pidbookingdata)
Error in decompose(pidbookingdata) :
time series has no or less than 2 periodsso, from this site I got and tried the below approach which works:
dfts <- as.ts(xts(arrangeddata$bookingqty,order.by=arrangeddata$bookingdate))
dfts
dfts <- ts(dfts, frequency=52)
dcomp <- decompose(dfts)
the dfts data as shown below
dfts
Time Series:
Start = c(1, 1)
End = c(3, 1)
Frequency = 52
[1] 202 564 359 638 487 491 364 762 419 642 723 579 1803 437 587 803 1347 600 616
[20] 2242 1313 264 918 420 741 2213 379 386 854 1235 726 774 1135 1127 466 987 665 997
[39] 2800 594 715 2009 1592 499 1906 1619 1277 683 2132 1195 1250 5001 320 577 825 885 1910
[58] 1072 615 1809 1243 1516 754 910 1766 599 536 1170 2060 719 706 1129 1807 949 653 1612
[77] 1058 2699 617 335 527 526 1729 512 1026 824 1144 711 743 847 833 4192 576 610 645
[96] 950 578 786 990 1804 853 767 1325 1872 3002when I do plot(dfts)
I see the x axis index as 1.0 1.5 2 2.5 3
am I doing correct or something is wrong here? what does the indices 1.0, 1.5, 2.0 means in terms of weeks?
Posts: 1
Participants: 1