@rajiv2806 wrote:
Hi all,
I am currently practicing the practice problem in the Hackathon, Experiments with data. I am little confused in the last part.
le = LabelEncoder() for var in categorical_variables: train[var] = le.fit_transform(train[var]) for var in categorical_variables[:len(categorical_variables)-1]: test[var] = le.fit_transform(test[var])
here we have converted the categorical variables to numeric codes. this is fine.
Now in the Test data Frame i am creating a new column "Income.Group" and assigning the predicted values to that column.
model = DecisionTreeClassifier(max_depth = 10,min_samples_leaf = 100, max_features = 'sqrt') model.fit(train[independent_variable],train[dependent_variable]) predictions_train = model.predict(train[independent_variable]) predictions_test = model.predict(test[independent_variable]) test['Income.Group'] = predictions_test test.to_csv('D:/AnalyticsVidya/Workshop/ttt.csv')
Now when i open the output csv file, it is showing the values in the numeric format (which is obvious as we converted the dataframe with LabelEncoder).
But, i i want to reconvert the categorical variables from Numeric back into the categories, how to do that. Basically, how to reverse the process done by the function LabelEncoder() ?
Posts: 1
Participants: 1